An S4 method printing a summary of the model parameter estimates for an object of class penfa.

# S4 method for penfa
summary(
  object,
  header = TRUE,
  estimates = TRUE,
  ci = TRUE,
  level = 0.95,
  nd = 3L,
  cutoff = 0.05,
  extra = TRUE
)

Arguments

object

An object of class penfa, found as a result of a call to penfa.

header

Logical. If TRUE, the header section is printed. The header contains relevant information about the data, the fitted model, the optimization process, and the penalization strategy, including, for instance, the employed penalties, the estimated effective degrees of freedom (edf), the optimal values of the tuning parameter(s), the GBIC and many others.

estimates

Logical. If TRUE, a section with the parameter estimates is printed out.

ci

Logical. If TRUE, confidence intervals are added to the parameter estimates section.

level

Logical. It denotes the significance level used for the statistical tests.

nd

Integer. It determines the number of digits after the decimal point to be printed in the parameter estimates section.

cutoff

Numeric. Standard errors and confidence intervals for the penalized parameter estimates falling below the cutoff value are not displayed. Confidence intervals for the parameters that have been penalized and shrunken to zero must be treated with caution.

extra

Logical. If TRUE, additional information on the model are displayed.

Value

An object reporting a detailed summary of the estimated parameters for a penfa model.

See also

Examples

data(ccdata) syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + 0*v1 + v2 + v3 + v4 + v5 voice =~ 0*h1 + h2 + h3 + h4 + h5 + h6 + h7 + v1 + v2 + v3 + v4 + v5' alasso_fit <- penfa(## factor model model = syntax, data = ccdata, std.lv = TRUE, ## penalization pen.shrink = "alasso", eta = list(shrink = c("lambda" = 0.01), diff = c("none" = 0)), ## automatic procedure strategy = "auto")
#> Computing weights for alasso (ML estimates)... done. #> #> Automatic procedure: #> Iteration 1 : 0.00298271 #> Iteration 2 : 0.00452604 #> #> Largest absolute gradient value: 12.76355181 #> Fisher information matrix is positive definite #> Eigenvalue range: [180.2917, 9189645] #> Trust region iterations: 15 #> Factor solution: admissible #> Effective degrees of freedom: 27.12936
summary(alasso_fit)
#> penfa 0.1.1 reached convergence #> #> Number of observations 767 #> Number of groups 1 #> Number of observed variables 12 #> Number of latent factors 2 #> #> Estimator PMLE #> Optimization method trust-region #> Information fisher #> Strategy auto #> Number of iterations (total) 58 #> Number of two-steps (automatic) 2 #> Influence factor 4 #> Number of parameters: #> Free 13 #> Penalized 22 #> Effective degrees of freedom 27.129 #> GIC 17222.980 #> GBIC 17348.928 #> #> Penalty function: #> Sparsity alasso #> #> Additional tuning parameter #> alasso 1 #> #> Optimal tuning parameter: #> Sparsity #> - Factor loadings 0.005 #> #> #> Parameter Estimates: #> #> Latent Variables: #> Type Estimate Std.Err 2.5% 97.5% #> help =~ #> h1 pen 0.766 0.030 0.707 0.825 #> h2 pen 0.858 0.028 0.803 0.913 #> h3 pen 0.775 0.030 0.717 0.834 #> h4 pen 0.921 0.038 0.847 0.995 #> h5 pen 0.810 0.040 0.732 0.887 #> h6 pen 0.782 0.044 0.696 0.868 #> h7 pen 0.523 0.050 0.426 0.620 #> v1 fixed 0.000 0.000 0.000 #> v2 pen 0.000 #> v3 pen 0.000 #> v4 pen 0.000 #> v5 pen -0.000 #> voice =~ #> h1 fixed 0.000 0.000 0.000 #> h2 pen -0.000 #> h3 pen 0.000 #> h4 pen -0.041 #> h5 pen 0.053 0.031 -0.008 0.114 #> h6 pen 0.104 0.038 0.029 0.180 #> h7 pen 0.341 0.049 0.246 0.437 #> v1 pen 0.851 0.028 0.795 0.906 #> v2 pen 0.871 0.028 0.817 0.926 #> v3 pen 0.842 0.029 0.786 0.898 #> v4 pen 0.843 0.029 0.787 0.899 #> v5 pen 0.805 0.029 0.747 0.862 #> #> Covariances: #> Type Estimate Std.Err 2.5% 97.5% #> help ~~ #> voice free 0.877 0.011 0.855 0.900 #> #> Variances: #> Type Estimate Std.Err 2.5% 97.5% #> .h1 free 0.388 0.021 0.346 0.429 #> .h2 free 0.233 0.014 0.205 0.261 #> .h3 free 0.372 0.021 0.332 0.413 #> .h4 free 0.184 0.012 0.160 0.209 #> .h5 free 0.235 0.014 0.207 0.263 #> .h6 free 0.201 0.012 0.177 0.225 #> .h7 free 0.264 0.015 0.235 0.293 #> .v1 free 0.245 0.015 0.216 0.275 #> .v2 free 0.208 0.014 0.182 0.235 #> .v3 free 0.261 0.016 0.230 0.292 #> .v4 free 0.259 0.016 0.228 0.290 #> .v5 free 0.324 0.019 0.287 0.361 #> help fixed 1.000 1.000 1.000 #> voice fixed 1.000 1.000 1.000 #>