The penfaSampleStats
class provides information on the
sample moments of the factor analysis model. This
class is an adaptation of the lavSampleStats
class from the
lavaan package.
var
List of the variances of the observed variables in every group.
cov
List of the covariance matrices of the observed variables in every group.
mean
List of the means of the observed variables in every group.
group.w
List of group weights.
nobs
List of the effective number of observations for every group.
ntotal
Integer. Total number of observations across all groups.
ngroups
Integer. Number of groups.
icov
List of the inverse matrices of the covariance matrices of the observed variables in every group.
cov.log.det
List of the logarithms of the determinants of the covariance matrices of the observed variables for every group.
data(ccdata) syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + 0*v1 + v2 + v3 + v4 + v5 voice =~ 0*h1 + h2 + h3 + h4 + h5 + h6 + h7 + v1 + v2 + v3 + v4 + v5' alasso_fit <- penfa(## factor model model = syntax, data = ccdata, std.lv = TRUE, ## penalization pen.shrink = "alasso", eta = list(shrink = c("lambda" = 0.01), diff = c("none" = 0)), ## automatic procedure strategy = "auto")#> Computing weights for alasso (ML estimates)... done. #> #> Automatic procedure: #> Iteration 1 : 0.00298271 #> Iteration 2 : 0.00452604 #> #> Largest absolute gradient value: 12.76355181 #> Fisher information matrix is positive definite #> Eigenvalue range: [180.2917, 9189645] #> Trust region iterations: 15 #> Factor solution: admissible #> Effective degrees of freedom: 27.12936alasso_fit@SampleStats#> An object of class "penfaSampleStats" #> Slot "var": #> [[1]] #> [1] 0.9986962 0.9986962 0.9986962 0.9986962 0.9986962 0.9986962 0.9986962 #> [8] 0.9986962 0.9986962 0.9986962 0.9986962 0.9986962 #> #> #> Slot "cov": #> [[1]] #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 0.9986962 0.7324446 0.6582768 0.6991043 0.6707437 0.6584068 0.6371664 #> [2,] 0.7324446 0.9986962 0.7075285 0.7988196 0.7311182 0.7800300 0.7093328 #> [3,] 0.6582768 0.7075285 0.9986962 0.7176571 0.6878761 0.6837715 0.6331770 #> [4,] 0.6991043 0.7988196 0.7176571 0.9986962 0.7981995 0.7936238 0.7453160 #> [5,] 0.6707437 0.7311182 0.6878761 0.7981995 0.9986962 0.7930928 0.7504264 #> [6,] 0.6584068 0.7800300 0.6837715 0.7936238 0.7930928 0.9986962 0.8118928 #> [7,] 0.6371664 0.7093328 0.6331770 0.7453160 0.7504264 0.8118928 0.9986962 #> [8,] 0.6068802 0.6506414 0.5977097 0.6650654 0.6834911 0.7149524 0.7239390 #> [9,] 0.6008534 0.6864146 0.6312143 0.6983221 0.7011685 0.7243845 0.7452085 #> [10,] 0.5941055 0.6700023 0.6099459 0.6830820 0.6726631 0.6906560 0.6908550 #> [11,] 0.6057474 0.6665377 0.6090964 0.6580129 0.6821517 0.6931624 0.7047642 #> [12,] 0.5776645 0.6366429 0.5849625 0.6396187 0.6506030 0.6484770 0.6357505 #> [,8] [,9] [,10] [,11] [,12] #> [1,] 0.6068802 0.6008534 0.5941055 0.6057474 0.5776645 #> [2,] 0.6506414 0.6864146 0.6700023 0.6665377 0.6366429 #> [3,] 0.5977097 0.6312143 0.6099459 0.6090964 0.5849625 #> [4,] 0.6650654 0.6983221 0.6830820 0.6580129 0.6396187 #> [5,] 0.6834911 0.7011685 0.6726631 0.6821517 0.6506030 #> [6,] 0.7149524 0.7243845 0.6906560 0.6931624 0.6484770 #> [7,] 0.7239390 0.7452085 0.6908550 0.7047642 0.6357505 #> [8,] 0.9986962 0.7859599 0.7296203 0.7360779 0.7168406 #> [9,] 0.7859599 0.9986962 0.7858874 0.7359273 0.7067616 #> [10,] 0.7296203 0.7858874 0.9986962 0.7423038 0.6937184 #> [11,] 0.7360779 0.7359273 0.7423038 0.9986962 0.7651156 #> [12,] 0.7168406 0.7067616 0.6937184 0.7651156 0.9986962 #> #> #> Slot "mean": #> [[1]] #> [1] 6.719961e-17 -4.631960e-17 -2.598874e-16 2.812468e-16 -1.190559e-16 #> [6] 1.925882e-16 8.628836e-17 -3.291677e-17 -2.267291e-16 8.286867e-17 #> [11] -4.419813e-17 1.641406e-16 #> #> #> Slot "group.w": #> [[1]] #> [1] 1 #> #> #> Slot "nobs": #> [[1]] #> [1] 767 #> #> #> Slot "ntotal": #> [1] 767 #> #> Slot "ngroups": #> [1] 1 #> #> Slot "icov": #> [[1]] #> [,1] [,2] [,3] [,4] [,5] [,6] #> [1,] 2.56666779 -0.89838405 -0.43259377 -0.32421942 -0.28777293 0.14384062 #> [2,] -0.89838405 3.95326317 -0.44053127 -1.11869229 0.02923219 -0.98482962 #> [3,] -0.43259377 -0.44053127 2.55815889 -0.51748759 -0.33656130 -0.21268026 #> [4,] -0.32421942 -1.11869229 -0.51748759 4.38641636 -1.13430268 -0.66819097 #> [5,] -0.28777293 0.02923219 -0.33656130 -1.13430268 3.82775834 -0.91839165 #> [6,] 0.14384062 -0.98482962 -0.21268026 -0.66819097 -0.91839165 4.67858561 #> [7,] -0.17310371 0.02463264 0.07352768 -0.40899326 -0.42918960 -1.43719481 #> [8,] -0.23576724 0.16145846 0.02863931 0.08864097 -0.11676810 -0.40475083 #> [9,] 0.14652390 -0.20923871 -0.18695637 -0.10152597 -0.13393274 -0.06775339 #> [10,] -0.03071658 -0.16324880 -0.07073100 -0.28942767 -0.03411934 -0.06008535 #> [11,] -0.12066923 -0.17892478 -0.10165373 0.22341331 -0.21314749 -0.08840909 #> [12,] -0.06729872 -0.13855313 -0.08660113 -0.13423818 -0.18704450 0.02032045 #> [,7] [,8] [,9] [,10] [,11] [,12] #> [1,] -0.17310371 -0.23576724 0.14652390 -0.03071658 -0.12066923 -0.06729872 #> [2,] 0.02463264 0.16145846 -0.20923871 -0.16324880 -0.17892478 -0.13855313 #> [3,] 0.07352768 0.02863931 -0.18695637 -0.07073100 -0.10165373 -0.08660113 #> [4,] -0.40899326 0.08864097 -0.10152597 -0.28942767 0.22341331 -0.13423818 #> [5,] -0.42918960 -0.11676810 -0.13393274 -0.03411934 -0.21314749 -0.18704450 #> [6,] -1.43719481 -0.40475083 -0.06775339 -0.06008535 -0.08840909 0.02032045 #> [7,] 3.85478920 -0.42527880 -0.64374297 -0.05729874 -0.43801838 0.19841068 #> [8,] -0.42527880 3.51881217 -1.09635019 -0.36152562 -0.44749735 -0.58638339 #> [9,] -0.64374297 -1.09635019 4.06158608 -1.17098217 -0.24083979 -0.32528433 #> [10,] -0.05729874 -0.36152562 -1.17098217 3.36702270 -0.70263464 -0.26599088 #> [11,] -0.43801838 -0.44749735 -0.24083979 -0.70263464 3.54156388 -1.15812678 #> [12,] 0.19841068 -0.58638339 -0.32528433 -0.26599088 -1.15812678 2.97071802 #> #> #> Slot "cov.log.det": #> [[1]] #> [1] -11.98038 #> #>