An S4 method returning the model-implied moments for an object of class
penfa
. For every group, a list with the model-implied moments is
returned.
# S4 method for penfa fitted(object, labels = TRUE)
object | An object of class |
---|---|
labels | Logical. If |
A list of the model-implied moments for each group: cov
contains the implied covariance matrix, and mean
the implied mean
vector. If just the covariance matrix is analyzed, only the cov
argument is returned.
data(ccdata) syntax = 'help =~ h1 + h2 + h3 + h4 + h5 + h6 + h7 + 0*v1 + v2 + v3 + v4 + v5 voice =~ 0*h1 + h2 + h3 + h4 + h5 + h6 + h7 + v1 + v2 + v3 + v4 + v5' alasso_fit <- penfa(## factor model model = syntax, data = ccdata, std.lv = TRUE, ## penalization pen.shrink = "alasso", eta = list(shrink = c("lambda" = 0.01), diff = c("none" = 0)), ## automatic procedure strategy = "auto")#> Computing weights for alasso (ML estimates)... done. #> #> Automatic procedure: #> Iteration 1 : 0.00298271 #> Iteration 2 : 0.00452604 #> #> Largest absolute gradient value: 12.76355181 #> Fisher information matrix is positive definite #> Eigenvalue range: [180.2917, 9189645] #> Trust region iterations: 15 #> Factor solution: admissible #> Effective degrees of freedom: 27.12936#> $cov #> h1 h2 h3 h4 h5 h6 h7 v1 v2 v3 v4 v5 #> h1 0.974 #> h2 0.657 0.969 #> h3 0.594 0.665 0.973 #> h4 0.678 0.759 0.686 0.968 #> h5 0.655 0.734 0.664 0.757 0.968 #> h6 0.669 0.749 0.677 0.772 0.749 0.966 #> h7 0.630 0.706 0.638 0.724 0.708 0.727 0.967 #> v1 0.571 0.640 0.579 0.652 0.649 0.672 0.681 0.969 #> v2 0.585 0.656 0.593 0.668 0.665 0.689 0.697 0.741 0.968 #> v3 0.566 0.634 0.573 0.645 0.642 0.665 0.674 0.716 0.734 0.970 #> v4 0.566 0.634 0.573 0.646 0.643 0.666 0.674 0.717 0.735 0.710 0.970 #> v5 0.541 0.606 0.547 0.617 0.614 0.636 0.644 0.685 0.701 0.678 0.678 0.972 #>